Adaptive Surface Normal Constraint for Depth Estimation

Authors: Xiaoxiao Long, Cheng Lin, Lingjie Liu, Wei Li, Christian Theobalt, Ruigang Yang, Wenping Wang

License: CC BY-NC-ND 4.0

Abstract: We present a novel method for single image depth estimation using surface normal constraints. Existing depth estimation methods either suffer from the lack of geometric constraints, or are limited to the difficulty of reliably capturing geometric context, which leads to a bottleneck of depth estimation quality. We therefore introduce a simple yet effective method, named Adaptive Surface Normal (ASN) constraint, to effectively correlate the depth estimation with geometric consistency. Our key idea is to adaptively determine the reliable local geometry from a set of randomly sampled candidates to derive surface normal constraint, for which we measure the consistency of the geometric contextual features. As a result, our method can faithfully reconstruct the 3D geometry and is robust to local shape variations, such as boundaries, sharp corners and noises. We conduct extensive evaluations and comparisons using public datasets. The experimental results demonstrate our method outperforms the state-of-the-art methods and has superior efficiency and robustness.

Submitted to arXiv on 29 Mar. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.