Fully Distributed Model Predictive Control of Connected Automated Vehicles in Intersections: Theory and Vehicle Experiments
Authors: Alexander Katriniok, Benedikt Rosarius, Petri Mähönen
Abstract: We propose a fully distributed control system architecture, amenable to in-vehicle implementation, that aims to safely coordinate connected and automated vehicles (CAVs) at road intersections. For control purposes, we build upon a fully distributed model predictive control approach, in which the agents solve a nonconvex optimal control problem (OCP) locally and synchronously, and exchange their optimized trajectories via vehicle-to-vehicle (V2V) communication. To accommodate a fast solution of the nonconvex OCPs, we apply the penalty convex-concave procedure which solves a convexified version of the original OCP. For experimental evaluation, we complement the predictive controller with a localization layer, being in charge of self-localization, and an estimator, which determines joint collision points with other agents. Experimental tests reveal the efficacy of the proposed control system architecture.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.