Non-linear Functional Modeling using Neural Networks
Authors: Aniruddha Rajendra Rao, Matthew Reimherr
Abstract: We introduce a new class of non-linear models for functional data based on neural networks. Deep learning has been very successful in non-linear modeling, but there has been little work done in the functional data setting. We propose two variations of our framework: a functional neural network with continuous hidden layers, called the Functional Direct Neural Network (FDNN), and a second version that utilizes basis expansions and continuous hidden layers, called the Functional Basis Neural Network (FBNN). Both are designed explicitly to exploit the structure inherent in functional data. To fit these models we derive a functional gradient based optimization algorithm. The effectiveness of the proposed methods in handling complex functional models is demonstrated by comprehensive simulation studies and real data examples.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.