Robust decision-making under risk and ambiguity

Authors: Maximilian Blesch, Philipp Eisenhauer

License: CC BY 4.0

Abstract: Economists often estimate economic models on data and use the point estimates as a stand-in for the truth when studying the model's implications for optimal decision-making. This practice ignores model ambiguity, exposes the decision problem to misspecification, and ultimately leads to post-decision disappointment. Using statistical decision theory, we develop a framework to explore, evaluate, and optimize robust decision rules that explicitly account for estimation uncertainty. We show how to operationalize our analysis by studying robust decisions in a stochastic dynamic investment model in which a decision-maker directly accounts for uncertainty in the model's transition dynamics.

Submitted to arXiv on 23 Apr. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.