Efficient Off-Policy Q-Learning for Data-Based Discrete-Time LQR Problems
Authors: Victor G. Lopez, Mohammad Alsalti, Matthias A. Müller
Abstract: This paper introduces and analyzes an improved Q-learning algorithm for discrete-time linear time-invariant systems. The proposed method does not require any knowledge of the system dynamics, and it enjoys significant efficiency advantages over other data-based optimal control methods in the literature. This algorithm can be fully executed off-line, as it does not require to apply the current estimate of the optimal input to the system as in on-policy algorithms. It is shown that a persistently exciting input, defined from an easily tested matrix rank condition, guarantees the convergence of the algorithm. A data-based method is proposed to design the initial stabilizing feedback gain that the algorithm requires. Robustness of the algorithm in the presence of noisy measurements is analyzed. We compare the proposed algorithm in simulation to different direct and indirect data-based control design methods.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.