MUSER: MUltimodal Stress Detection using Emotion Recognition as an Auxiliary Task
Authors: Yiqun Yao, Michalis Papakostas, Mihai Burzo, Mohamed Abouelenien, Rada Mihalcea
Abstract: The capability to automatically detect human stress can benefit artificial intelligent agents involved in affective computing and human-computer interaction. Stress and emotion are both human affective states, and stress has proven to have important implications on the regulation and expression of emotion. Although a series of methods have been established for multimodal stress detection, limited steps have been taken to explore the underlying inter-dependence between stress and emotion. In this work, we investigate the value of emotion recognition as an auxiliary task to improve stress detection. We propose MUSER -- a transformer-based model architecture and a novel multi-task learning algorithm with speed-based dynamic sampling strategy. Evaluations on the Multimodal Stressed Emotion (MuSE) dataset show that our model is effective for stress detection with both internal and external auxiliary tasks, and achieves state-of-the-art results.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.