Dynamical independence: discovering emergent macroscopic processes in complex dynamical systems
Authors: Lionel Barnett, Anil K. Seth
Abstract: We introduce a notion of emergence for coarse-grained macroscopic variables associated with highly-multivariate microscopic dynamical processes, in the context of a coupled dynamical environment. Dynamical independence instantiates the intuition of an emergent macroscopic process as one possessing the characteristics of a dynamical system "in its own right", with its own dynamical laws distinct from those of the underlying microscopic dynamics. We quantify (departure from) dynamical independence by a transformation-invariant Shannon information-based measure of dynamical dependence. We emphasise the data-driven discovery of dynamically-independent macroscopic variables, and introduce the idea of a multiscale "emergence portrait" for complex systems. We show how dynamical dependence may be computed explicitly for linear systems via state-space modelling, in both time and frequency domains, facilitating discovery of emergent phenomena at all spatiotemporal scales. We discuss application of the state-space operationalisation to inference of the emergence portrait for neural systems from neurophysiological time-series data. We also examine dynamical independence for discrete- and continuous-time deterministic dynamics, with potential application to Hamiltonian mechanics and classical complex systems such as flocking and cellular automata.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.