LIV effects on the quantum stochastic motion in an acoustic FRW-geometry
Authors: M. A. Anacleto, C. H. G. Bessa, F. A. Brito, A. E. Mateus, E. Passos, J. R. L. Santos
Abstract: It is well known in the literature that vacuum fluctuations can induce a random motion of particles which is sometimes called quantum Brownian motion or quantum stochastic motion. In this paper, we consider Lorentz Invariance Violation (LIV) in an acoustic spatially flat Friedman-Robertson-Walker (FRW) geometry. In particular, we are looking for the LIV effects in the stochastic motion of scalar and massive test particles. This motion is induced by a massless quantized scalar field on this geometry, which in turn is derived from an Abelian Higgs model with LIV. Deviations in the velocity dispersion of the particles proportional to the LIV parameter are found.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.