Moving in a 360 World: Synthesizing Panoramic Parallaxes from a Single Panorama

Authors: Ching-Yu Hsu, Cheng Sun, Hwann-Tzong Chen

Abstract: We present Omnidirectional Neural Radiance Fields (OmniNeRF), the first method to the application of parallax-enabled novel panoramic view synthesis. Recent works for novel view synthesis focus on perspective images with limited field-of-view and require sufficient pictures captured in a specific condition. Conversely, OmniNeRF can generate panorama images for unknown viewpoints given a single equirectangular image as training data. To this end, we propose to augment the single RGB-D panorama by projecting back and forth between a 3D world and different 2D panoramic coordinates at different virtual camera positions. By doing so, we are able to optimize an Omnidirectional Neural Radiance Field with visible pixels collecting from omnidirectional viewing angles at a fixed center for the estimation of new viewing angles from varying camera positions. As a result, the proposed OmniNeRF achieves convincing renderings of novel panoramic views that exhibit the parallax effect. We showcase the effectiveness of each of our proposals on both synthetic and real-world datasets.

Submitted to arXiv on 21 Jun. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.