Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality

Authors: Yiqin Zhao, Tian Guo

Abstract: Omnidirectional lighting provides the foundation for achieving spatially-variant photorealistic 3D rendering, a desirable property for mobile augmented reality applications. However, in practice, estimating omnidirectional lighting can be challenging due to limitations such as partial panoramas of the rendering positions, and the inherent environment lighting and mobile user dynamics. A new opportunity arises recently with the advancements in mobile 3D vision, including built-in high-accuracy depth sensors and deep learning-powered algorithms, which provide the means to better sense and understand the physical surroundings. Centering the key idea of 3D vision, in this work, we design an edge-assisted framework called Xihe to provide mobile AR applications the ability to obtain accurate omnidirectional lighting estimation in real time. Specifically, we develop a novel sampling technique that efficiently compresses the raw point cloud input generated at the mobile device. This technique is derived based on our empirical analysis of a recent 3D indoor dataset and plays a key role in our 3D vision-based lighting estimator pipeline design. To achieve the real-time goal, we develop a tailored GPU pipeline for on-device point cloud processing and use an encoding technique that reduces network transmitted bytes. Finally, we present an adaptive triggering strategy that allows Xihe to skip unnecessary lighting estimations and a practical way to provide temporal coherent rendering integration with the mobile AR ecosystem. We evaluate both the lighting estimation accuracy and time of Xihe using a reference mobile application developed with Xihe's APIs. Our results show that Xihe takes as fast as 20.67ms per lighting estimation and achieves 9.4% better estimation accuracy than a state-of-the-art neural network.

Submitted to arXiv on 30 May. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.