How to Train Your MAML to Excel in Few-Shot Classification
Authors: Han-Jia Ye, Wei-Lun Chao
Abstract: Model-agnostic meta-learning (MAML) is arguably the most popular meta-learning algorithm nowadays, given its flexibility to incorporate various model architectures and to be applied to different problems. Nevertheless, its performance on few-shot classification is far behind many recent algorithms dedicated to the problem. In this paper, we point out several key facets of how to train MAML to excel in few-shot classification. First, we find that a large number of gradient steps are needed for the inner loop update, which contradicts the common usage of MAML for few-shot classification. Second, we find that MAML is sensitive to the permutation of class assignments in meta-testing: for a few-shot task of $N$ classes, there are exponentially many ways to assign the learned initialization of the $N$-way classifier to the $N$ classes, leading to an unavoidably huge variance. Third, we investigate several ways for permutation invariance and find that learning a shared classifier initialization for all the classes performs the best. On benchmark datasets such as MiniImageNet and TieredImageNet, our approach, which we name UNICORN-MAML, performs on a par with or even outperforms state-of-the-art algorithms, while keeping the simplicity of MAML without adding any extra sub-networks.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.