Exploring Low-light Object Detection Techniques

Authors: Winston Chen, Tejas Shah

5 pages, 5 figures
License: CC BY-NC-ND 4.0

Abstract: Images acquired by computer vision systems under low light conditions have multiple characteristics like high noise, lousy illumination, reflectance, and bad contrast, which make object detection tasks difficult. Much work has been done to enhance images using various pixel manipulation techniques, as well as deep neural networks - some focused on improving the illumination, while some on reducing the noise. Similarly, considerable research has been done in object detection neural network models. In our work, we break down the problem into two phases: 1)First, we explore which image enhancement algorithm is more suited for object detection tasks, where accurate feature retrieval is more important than good image quality. Specifically, we look at basic histogram equalization techniques and unpaired image translation techniques. 2)In the second phase, we explore different object detection models that can be applied to the enhanced image. We conclude by comparing all results, calculating mean average precisions (mAP), and giving some directions for future work.

Submitted to arXiv on 30 Jul. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.