MigrationsKB: A Knowledge Base of Public Attitudes towards Migrations and their Driving Factors
Authors: Yiyi Chen, Harald Sack, Mehwish Alam
Abstract: With the increasing trend in the topic of migration in Europe, the public is now more engaged in expressing their opinions through various platforms such as Twitter. Understanding the online discourses is therefore essential to capture the public opinion. The goal of this study is the analysis of social media platform to quantify public attitudes towards migrations and the identification of different factors causing these attitudes. The tweets spanning from 2013 to Jul-2021 in the European countries which are hosts to immigrants are collected, pre-processed, and filtered using advanced topic modeling technique. BERT-based entity linking and sentiment analysis, and attention-based hate speech detection are performed to annotate the curated tweets. Moreover, the external databases are used to identify the potential social and economic factors causing negative attitudes of the people about migration. To further promote research in the interdisciplinary fields of social science and computer science, the outcomes are integrated into a Knowledge Base (KB), i.e., MigrationsKB which significantly extends the existing models to take into account the public attitudes towards migrations and the economic indicators. This KB is made public using FAIR principles, which can be queried through SPARQL endpoint. Data dumps are made available on Zenodo.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.