Online Range Image-based Pole Extractor for Long-term LiDAR Localization in Urban Environments
Authors: Hao Dong, Xieyuanli Chen, Cyrill Stachniss
Abstract: Reliable and accurate localization is crucial for mobile autonomous systems. Pole-like objects, such as traffic signs, poles, lamps, etc., are ideal landmarks for localization in urban environments due to their local distinctiveness and long-term stability. In this paper, we present a novel, accurate, and fast pole extraction approach that runs online and has little computational demands such that this information can be used for a localization system. Our method performs all computations directly on range images generated from 3D LiDAR scans, which avoids processing 3D point cloud explicitly and enables fast pole extraction for each scan. We test the proposed pole extraction and localization approach on different datasets with different LiDAR scanners, weather conditions, routes, and seasonal changes. The experimental results show that our approach outperforms other state-of-the-art approaches, while running online without a GPU. Besides, we release our pole dataset to the public for evaluating the performance of pole extractor, as well as the implementation of our approach.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.