Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation
Authors: Ofir Press, Noah A. Smith, Mike Lewis
Abstract: Since the introduction of the transformer model by Vaswani et al. (2017), a fundamental question remains open: how to achieve extrapolation at inference time to longer sequences than seen during training? We first show that extrapolation can be improved by changing the position representation method, though we find that existing proposals do not allow efficient extrapolation. We introduce a simple and efficient method, Attention with Linear Biases (ALiBi), that allows for extrapolation. ALiBi does not add positional embeddings to the word embeddings; instead, it biases the query-key attention scores with a term that is proportional to their distance. We show that this method allows training a 1.3 billion parameter model on input sequences of length 1024 that extrapolates to input sequences of length 2048, achieving the same perplexity as a sinusoidal position embedding model trained on inputs of length 2048, 11% faster and using 11% less memory. ALiBi's inductive bias towards recency allows it to outperform multiple strong position methods on the WikiText-103 benchmark. Finally, we provide analysis of ALiBi to understand why it leads to better performance.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.