A Machine Learning Framework for Automatic Prediction of Human Semen Motility
Authors: Sandra Ottl, Shahin Amiriparian, Maurice Gerczuk, Björn Schuller
Abstract: In this paper, human semen samples from the visem dataset collected by the Simula Research Laboratory are automatically assessed with machine learning methods for their quality in respect to sperm motility. Several regression models are trained to automatically predict the percentage (0 to 100) of progressive, non-progressive, and immotile spermatozoa in a given sample. The video samples are adopted for three different feature extraction methods, in particular custom movement statistics, displacement features, and motility specific statistics have been utilised. Furthermore, four machine learning models, including linear Support Vector Regressor (SVR), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN), have been trained on the extracted features for the task of automatic motility prediction. Best results for predicting motility are achieved by using the Crocker-Grier algorithm to track sperm cells in an unsupervised way and extracting individual mean squared displacement features for each detected track. These features are then aggregated into a histogram representation applying a Bag-of-Words approach. Finally, a linear SVR is trained on this feature representation. Compared to the best submission of the Medico Multimedia for Medicine challenge, which used the same dataset and splits, the Mean Absolute Error (MAE) could be reduced from 8.83 to 7.31. For the sake of reproducibility, we provide the source code for our experiments on GitHub.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.