Actionable Approaches to Promote Ethical AI in Libraries
Authors: Helen Bubinger, Jesse David Dinneen
Abstract: The widespread use of artificial intelligence (AI) in many domains has revealed numerous ethical issues from data and design to deployment. In response, countless broad principles and guidelines for ethical AI have been published, and following those, specific approaches have been proposed for how to encourage ethical outcomes of AI. Meanwhile, library and information services too are seeing an increase in the use of AI-powered and machine learning-powered information systems, but no practical guidance currently exists for libraries to plan for, evaluate, or audit the ethics of intended or deployed AI. We therefore report on several promising approaches for promoting ethical AI that can be adapted from other contexts to AI-powered information services and in different stages of the software lifecycle.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.