Enhancing Computational Fluid Dynamics with Machine Learning
Authors: Ricardo Vinuesa, Steven L. Brunton
Abstract: Machine learning is rapidly becoming a core technology for scientific computing, with numerous opportunities to advance the field of computational fluid dynamics. In this Perspective, we highlight some of the areas of highest potential impact, including to accelerate direct numerical simulations, to improve turbulence closure modeling, and to develop enhanced reduced-order models. We also discuss emerging areas of machine learning that are promising for computational fluid dynamics, as well as some potential limitations that should be taken into account.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.