Graph Neural Networks with Learnable Structural and Positional Representations

Authors: Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson

ICLR 2022 (https://openreview.net/pdf?id=wTTjnvGphYj)
Code at https://github.com/vijaydwivedi75/gnn-lspe
License: CC BY 4.0

Abstract: Graph neural networks (GNNs) have become the standard learning architectures for graphs. GNNs have been applied to numerous domains ranging from quantum chemistry, recommender systems to knowledge graphs and natural language processing. A major issue with arbitrary graphs is the absence of canonical positional information of nodes, which decreases the representation power of GNNs to distinguish e.g. isomorphic nodes and other graph symmetries. An approach to tackle this issue is to introduce Positional Encoding (PE) of nodes, and inject it into the input layer, like in Transformers. Possible graph PE are Laplacian eigenvectors. In this work, we propose to decouple structural and positional representations to make easy for the network to learn these two essential properties. We introduce a novel generic architecture which we call LSPE (Learnable Structural and Positional Encodings). We investigate several sparse and fully-connected (Transformer-like) GNNs, and observe a performance increase for molecular datasets, from 1.79% up to 64.14% when considering learnable PE for both GNN classes.

Submitted to arXiv on 15 Oct. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.