Heterogeneous Graph Neural Networks for Large-Scale Bid Keyword Matching
Authors: Zongtao Liu, Bin Ma, Quan Liu, Jian Xu, Bo Zheng
Abstract: Digital advertising is a critical part of many e-commerce platforms such as Taobao and Amazon. While in recent years a lot of attention has been drawn to the consumer side including canonical problems like ctr/cvr prediction, the advertiser side, which directly serves advertisers by providing them with marketing tools, is now playing a more and more important role. When speaking of sponsored search, bid keyword recommendation is the fundamental service. This paper addresses the problem of keyword matching, the primary step of keyword recommendation. Existing methods for keyword matching merely consider modeling relevance based on a single type of relation among ads and keywords, such as query clicks or text similarity, which neglects rich heterogeneous interactions hidden behind them. To fill this gap, the keyword matching problem faces several challenges including: 1) how to learn enriched and robust embeddings from complex interactions among various types of objects; 2) how to conduct high-quality matching for new ads that usually lack sufficient data. To address these challenges, we develop a heterogeneous-graph-neural-network-based model for keyword matching named HetMatch, which has been deployed both online and offline at the core sponsored search platform of Alibaba Group. To extract enriched and robust embeddings among rich relations, we design a hierarchical structure to fuse and enhance the relevant neighborhood patterns both on the micro and the macro level. Moreover, by proposing a multi-view framework, the model is able to involve more positive samples for cold-start ads. Experimental results on a large-scale industrial dataset as well as online AB tests exhibit the effectiveness of HetMatch.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.