Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey

Authors: Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, Mark Crowley

To appear as a part of an upcoming textbook on dimensionality reduction and manifold learning

Abstract: This is a tutorial and survey paper on Generative Adversarial Network (GAN), adversarial autoencoders, and their variants. We start with explaining adversarial learning and the vanilla GAN. Then, we explain the conditional GAN and DCGAN. The mode collapse problem is introduced and various methods, including minibatch GAN, unrolled GAN, BourGAN, mixture GAN, D2GAN, and Wasserstein GAN, are introduced for resolving this problem. Then, maximum likelihood estimation in GAN are explained along with f-GAN, adversarial variational Bayes, and Bayesian GAN. Then, we cover feature matching in GAN, InfoGAN, GRAN, LSGAN, energy-based GAN, CatGAN, MMD GAN, LapGAN, progressive GAN, triple GAN, LAG, GMAN, AdaGAN, CoGAN, inverse GAN, BiGAN, ALI, SAGAN, Few-shot GAN, SinGAN, and interpolation and evaluation of GAN. Then, we introduce some applications of GAN such as image-to-image translation (including PatchGAN, CycleGAN, DeepFaceDrawing, simulated GAN, interactive GAN), text-to-image translation (including StackGAN), and mixing image characteristics (including FineGAN and MixNMatch). Finally, we explain the autoencoders based on adversarial learning including adversarial autoencoder, PixelGAN, and implicit autoencoder.

Submitted to arXiv on 26 Nov. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.