GJ 367b: A dense ultra-short period sub-Earth planet transiting a nearby red dwarf star
Authors: Kristine W. F. Lam, Szilárd Csizmadia, Nicola Astudillo-Defru, Xavier Bonfils, Davide Gandolfi, Sebastiano Padovan, Massimiliano Esposito, Coel Hellier, Teruyuki Hirano, John Livingston, Felipe Murgas, Alexis M. S. Smith, Karen A. Collins, Savita Mathur, Rafael A. Garcia, Steve B. Howell, Nuno C. Santos, Fei Dai, George R. Ricker, Roland Vanderspek, David W. Latham, Sara Seager, Joshua N. Winn, Jon M. Jenkins, Simon Albrecht, Jose M. Almenara, Etienne Artigau, Oscar Barragán, François Bouchy, Juan Cabrera, David Charbonneau, Priyanka Chaturvedi, Alexander Chaushev, Jessie L. Christiansen, William D. Cochran, José R. De Meideiros, Xavier Delfosse, Rodrigo F. Díaz, René Doyon, Philipp Eigmüller, Pedro Figueira, Thierry Forveille, Malcolm Fridlund, Guillaume Gaisné, Elisa Goffo, Iskra Georgieva, Sascha Grziwa, Eike Guenther, Artie P. Hatzes, Marshall C. Johnson, Petr Kabáth, Emil Knudstrup, Judith Korth, Pablo Lewin, Jack J. Lissauer, Christophe Lovis, Rafael Luque, Claudio Melo, Edward H. Morgan, Robert Morris, Michel Mayor, Norio Narita, Hannah L. M. Osborne, Enric Palle, Francesco Pepe, Carina M. Persson, Samuel N. Quinn, Heike Rauer, Seth Redfield, Joshua E. Schlieder, Damien Ségransan, Luisa M. Serrano, Jeffrey C. Smith, Ján Šubjak, Joseph D. Twicken, Stéphane Udry, Vincent Van Eylen, Michael Vezie
Abstract: Ultra-short-period (USP) exoplanets have orbital periods shorter than one day. Precise masses and radii of USPs could provide constraints on their unknown formation and evolution processes. We report the detection and characterization of the USP planet GJ 367b using high precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude = 10.2), nearby, red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of $0.718 \pm 0.054$ Earth-radii, a mass of $0.546 \pm 0.078$ Earth-masses, making it a sub-Earth. The corresponding bulk density is $8.106 \pm 2.165$ g cm$^-3$, close to that of iron. An interior structure model predicts the planet has an iron core radius fraction of $86 \pm 5\%$, similar to Mercury's interior.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.