Approaches Toward Physical and General Video Anomaly Detection
Authors: Laura Kart, Niv Cohen
Abstract: In recent years, many works have addressed the problem of finding never-seen-before anomalies in videos. Yet, most work has been focused on detecting anomalous frames in surveillance videos taken from security cameras. Meanwhile, the task of anomaly detection (AD) in videos exhibiting anomalous mechanical behavior, has been mostly overlooked. Anomaly detection in such videos is both of academic and practical interest, as they may enable automatic detection of malfunctions in many manufacturing, maintenance, and real-life settings. To assess the potential of the different approaches to detect such anomalies, we evaluate two simple baseline approaches: (i) Temporal-pooled image AD techniques. (ii) Density estimation of videos represented with features pretrained for video-classification. Development of such methods calls for new benchmarks to allow evaluation of different possible approaches. We introduce the Physical Anomalous Trajectory or Motion (PHANTOM) dataset, which contains six different video classes. Each class consists of normal and anomalous videos. The classes differ in the presented phenomena, the normal class variability, and the kind of anomalies in the videos. We also suggest an even harder benchmark where anomalous activities should be spotted on highly variable scenes.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.