Human-AI Collaboration for UX Evaluation: Effects of Explanation and Synchronization

Authors: Mingming Fan, Xianyou Yang, Tsz Tung Yu, Vera Q. Liao, Jian Zhao

Proceedings of the ACM on Human-Computer Interaction (PACM HCI), CSCW, 2022
License: CC BY-NC-ND 4.0

Abstract: Analyzing usability test videos is arduous. Although recent research showed the promise of AI in assisting with such tasks, it remains largely unknown how AI should be designed to facilitate effective collaboration between user experience (UX) evaluators and AI. Inspired by the concepts of agency and work context in human and AI collaboration literature, we studied two corresponding design factors for AI-assisted UX evaluation: explanations and synchronization. Explanations allow AI to further inform humans how it identifies UX problems from a usability test session; synchronization refers to the two ways humans and AI collaborate: synchronously and asynchronously. We iteratively designed a tool, AI Assistant, with four versions of UIs corresponding to the two levels of explanations (with/without) and synchronization (sync/async). By adopting a hybrid wizard-of-oz approach to simulating an AI with reasonable performance, we conducted a mixed-method study with 24 UX evaluators identifying UX problems from usability test videos using AI Assistant. Our quantitative and qualitative results show that AI with explanations, regardless of being presented synchronously or asynchronously, provided better support for UX evaluators' analysis and was perceived more positively; when without explanations, synchronous AI better improved UX evaluators' performance and engagement compared to the asynchronous AI. Lastly, we present the design implications for AI-assisted UX evaluation and facilitating more effective human-AI collaboration.

Submitted to arXiv on 23 Dec. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.