Collision Detection: An Improved Deep Learning Approach Using SENet and ResNext
Authors: Aloukik Aditya, Liudu Zhou, Hrishika Vachhani, Dhivya Chandrasekaran, Vijay Mago
Abstract: In recent days, with increased population and traffic on roadways, vehicle collision is one of the leading causes of death worldwide. The automotive industry is motivated on developing techniques to use sensors and advancements in the field of computer vision to build collision detection and collision prevention systems to assist drivers. In this article, a deep-learning-based model comprising of ResNext architecture with SENet blocks is proposed. The performance of the model is compared to popular deep learning models like VGG16, VGG19, Resnet50, and stand-alone ResNext. The proposed model outperforms the existing baseline models achieving a ROC-AUC of 0.91 using a significantly less proportion of the GTACrash synthetic data for training, thus reducing the computational overhead.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.