Learning Noise via Dynamical Decoupling of Entangled Qubits

Authors: Trevor McCourt, Charles Neill, Kenny Lee, Chris Quintana, Yu Chen, Julian Kelly, V. N. Smelyanskiy, M. I. Dykman, Alexander Korotkov, Isaac L. Chuang, A. G. Petukhov

arXiv: 2201.11173v1 - DOI (quant-ph)
5 pages, 4 figures

Abstract: Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom. This noise poses a challenge to quantum computing, where two-qubit gate performance is critical. Here, we develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates. In our superconducting system comprised of Transmon qubits with tunable couplers, we observe noise that is consistent with flux fluctuations in the coupler that simultaneously affects both qubits and induces noise in their entangling parameter. The effect of this noise on the qubits is very different from the well-studied single-qubit dephasing. Additionally, steps are observed in the decoupled signals, implying the presence of non-Gaussian noise.

Submitted to arXiv on 26 Jan. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.