RelTR: Relation Transformer for Scene Graph Generation

Authors: Yuren Cong, Michael Ying Yang, Bodo Rosenhahn

Abstract: Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by DETR, which excels in object detection, we view scene graph generation as a set prediction problem and propose an end-to-end scene graph generation model RelTR which has an encoder-decoder architecture. The encoder reasons about the visual feature context while the decoder infers a fixed-size set of triplets subject-predicate-object using different types of attention mechanisms with coupled subject and object queries. We design a set prediction loss performing the matching between the ground truth and predicted triplets for the end-to-end training. In contrast to most existing scene graph generation methods, RelTR is a one-stage method that predicts a set of relationships directly only using visual appearance without combining entities and labeling all possible predicates. Extensive experiments on the Visual Genome and Open Images V6 datasets demonstrate the superior performance and fast inference of our model.

Submitted to arXiv on 27 Jan. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.