Addressing Randomness in Evaluation Protocols for Out-of-Distribution Detection
Authors: Konstantin Kirchheim, Tim Gonschorek, Frank Ortmeier
Abstract: Deep Neural Networks for classification behave unpredictably when confronted with inputs not stemming from the training distribution. This motivates out-of-distribution detection (OOD) mechanisms. The usual lack of prior information on out-of-distribution data renders the performance estimation of detection approaches on unseen data difficult. Several contemporary evaluation protocols are based on open set simulations, which average the performance over up to five synthetic random splits of a dataset into in- and out-of-distribution samples. However, the number of possible splits may be much larger, and the performance of Deep Neural Networks is known to fluctuate significantly depending on different sources of random variation. We empirically demonstrate that current protocols may fail to provide reliable estimates of the expected performance of OOD methods. By casting this evaluation as a random process, we generalize the concept of open set simulations and propose to estimate the performance of OOD methods using a Monte Carlo approach that addresses the randomness.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.