Self-Consistency Improves Chain of Thought Reasoning in Language Models
Authors: Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Denny Zhou
Abstract: We explore a simple ensemble strategy, self-consistency, that significantly improves the reasoning accuracy of large language models. The idea is to sample a diverse set of outputs from a language model and return the most consistent answer in the set. Such ensembling method improves reasoning accuracy when combined with chain of thought prompting. For arithmetic and commonsense reasoning benchmarks we find that self-consistency yields significant accuracy improvements in a variety of datasets, such as GSM8K (+10%), SVAMP (+14%), MultiArith (+24%), CommonsenseQA (+5%) and ARC (easy +4%, challenge +5%).
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.