Multicomponent relativistic dissipative fluid dynamics from the Boltzmann equation
Authors: Jan A. Fotakis, Etele Molnár, Harri Niemi, Carsten Greiner, Dirk H. Rischke
Abstract: We derive multicomponent relativistic second-order dissipative fluid dynamics from the Boltzmann equations for a reactive mixture of $N_{\text{spec}}$ particle species with $N_q$ intrinsic quantum numbers (e.g. electric charge, baryon number, and strangeness) using the method of moments. We obtain the continuity equations for multiple conserved charges as well as the conservation equations for the total energy and momentum in the single-fluid approximation. These $4+N_q$ conservation laws are closed by deriving the second-order equations of motion for the dissipative quantities in the $(10+4N_q)$-moment approximation. The resulting fluid-dynamical equations are formally similar to those of a single-component system, but feature different thermodynamic relations and transport coefficients. We derive general relations for all transport coefficients and compute them explicitly in the ultrarelativistic limit.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.