Human-AI Collaboration Enables More Empathic Conversations in Text-based Peer-to-Peer Mental Health Support

Authors: Ashish Sharma, Inna W. Lin, Adam S. Miner, David C. Atkins, Tim Althoff

Abstract: Advances in artificial intelligence (AI) are enabling systems that augment and collaborate with humans to perform simple, mechanistic tasks like scheduling meetings and grammar-checking text. However, such Human-AI collaboration poses challenges for more complex, creative tasks, such as carrying out empathic conversations, due to difficulties of AI systems in understanding complex human emotions and the open-ended nature of these tasks. Here, we focus on peer-to-peer mental health support, a setting in which empathy is critical for success, and examine how AI can collaborate with humans to facilitate peer empathy during textual, online supportive conversations. We develop Hailey, an AI-in-the-loop agent that provides just-in-time feedback to help participants who provide support (peer supporters) respond more empathically to those seeking help (support seekers). We evaluate Hailey in a non-clinical randomized controlled trial with real-world peer supporters on TalkLife (N=300), a large online peer-to-peer support platform. We show that our Human-AI collaboration approach leads to a 19.60% increase in conversational empathy between peers overall. Furthermore, we find a larger 38.88% increase in empathy within the subsample of peer supporters who self-identify as experiencing difficulty providing support. We systematically analyze the Human-AI collaboration patterns and find that peer supporters are able to use the AI feedback both directly and indirectly without becoming overly reliant on AI while reporting improved self-efficacy post-feedback. Our findings demonstrate the potential of feedback-driven, AI-in-the-loop writing systems to empower humans in open-ended, social, creative tasks such as empathic conversations.

Submitted to arXiv on 28 Mar. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.