Visual Attention Methods in Deep Learning: An In-Depth Survey
Authors: Mohammed Hassanin, Saeed Anwar, Ibrahim Radwan, Fahad S Khan, Ajmal Mian
Abstract: Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated into one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey on attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques, categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of the attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and general open questions related to attention mechanisms. Finally, we recommend possible future research directions for deep attention. All the information about visual attention methods in deep learning is provided at \href{https://github.com/saeed-anwar/VisualAttention}{https://github.com/saeed-anwar/VisualAttention}
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.