Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection

Authors: Dimitri Bouche, Rémi Flamary, Florence d'Alché-Buc, Riwal Plougonven, Marianne Clausel, Jordi Badosa, Philippe Drobinski

Abstract: We study short-term prediction of wind speed and wind power (every 10 minutes up to 4 hours ahead). Accurate forecasts for these quantities are crucial to mitigate the negative effects of wind farms' intermittent production on energy systems and markets. We use machine learning to combine outputs from numerical weather prediction models with local observations. The former provide valuable information on higher scales dynamics while the latter gives the model fresher and location-specific data. So as to make the results usable for practitioners, we focus on well-known methods which can handle a high volume of data. We study first variable selection using both a linear technique and a nonlinear one. Then we exploit these results to forecast wind speed and wind power still with an emphasis on linear models versus nonlinear ones. For the wind power prediction, we also compare the indirect approach (wind speed predictions passed through a power curve) and the indirect one (directly predict wind power).

Submitted to arXiv on 20 Apr. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.