An empirical study of the effect of background data size on the stability of SHapley Additive exPlanations (SHAP) for deep learning models

Authors: Han Yuan, Mingxuan Liu, Lican Kang, Chenkui Miao, Ying Wu

License: CC BY 4.0

Abstract: Nowadays, the interpretation of why a machine learning (ML) model makes certain inferences is as crucial as the accuracy of such inferences. Some ML models like the decision tree possess inherent interpretability that can be directly comprehended by humans. Others like artificial neural networks (ANN), however, rely on external methods to uncover the deduction mechanism. SHapley Additive exPlanations (SHAP) is one of such external methods, which requires a background dataset when interpreting ANNs. Generally, a background dataset consists of instances randomly sampled from the training dataset. However, the sampling size and its effect on SHAP remain to be unexplored. In our empirical study on the MIMIC-III dataset, we show that the two core explanations - SHAP values and variable rankings fluctuate when using different background datasets acquired from random sampling, indicating that users cannot unquestioningly trust the one-shot interpretation from SHAP. Luckily, such fluctuation decreases with the increase of the background dataset size. Also, we notice an U-shape in the stability assessment of SHAP variable rankings, demonstrating that SHAP is more reliable in ranking the most and least important variables compared to moderately important ones. Overall, our results suggest that users should take into account how background data affects SHAP results, with improved SHAP stability as the background sample size increases.

Submitted to arXiv on 24 Apr. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.