Happenstance: Utilizing Semantic Search to Track Russian State Media Narratives about the Russo-Ukrainian War On Reddit
Authors: Hans W. A. Hanley, Deepak Kumar, Zakir Durumeric
Abstract: In the buildup to and in the weeks following the Russian Federation's invasion of Ukraine, Russian state media outlets output torrents of misleading and outright false information. In this work, we study this coordinated information campaign in order to understand the most prominent state media narratives touted by the Russian government to English-speaking audiences. To do this, we first perform sentence-level topic analysis using the large-language model MPNet on articles published by ten different pro-Russian propaganda websites including the new Russian "fact-checking" website waronfakes.com. Within this ecosystem, we show that smaller websites like katehon.com were highly effective at publishing topics that were later echoed by other Russian sites. After analyzing this set of Russian information narratives, we then analyze their correspondence with narratives and topics of discussion on the r/Russia and 10 other political subreddits. Using MPNet and a semantic search algorithm, we map these subreddits' comments to the set of topics extracted from our set of Russian websites, finding that 39.6% of r/Russia comments corresponded to narratives from pro-Russian propaganda websites compared to 8.86% on r/politics.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.