On the effectiveness of persistent homology

Authors: Renata Turkeš, Guido Montúfar, Nina Otter

Main text 9 pages; SI 10 pages; 24 figures

Abstract: Persistent homology (PH) is one of the most popular methods in Topological Data Analysis. While PH has been used in many different types of applications, the reasons behind its success remain elusive. In particular, it is not known for which classes of problems it is most effective, or to what extent it can detect geometric or topological features. The goal of this work is to identify some types of problems on which PH performs well or even better than other methods in data analysis. We consider three fundamental shape-analysis tasks: the detection of the number of holes, curvature and convexity from 2D and 3D point clouds sampled from shapes. Experiments demonstrate that PH is successful in these tasks, outperforming several baselines, including PointNet, an architecture inspired precisely by the properties of point clouds. In addition, we observe that PH remains effective for limited computational resources and limited training data, as well as out-of-distribution test data, including various data transformations and noise.

Submitted to arXiv on 21 Jun. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.