High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs

Authors: William S. Moses, Ivan R. Ivanov, Jens Domke, Toshio Endo, Johannes Doerfert, Oleksandr Zinenko

Abstract: While parallelism remains the main source of performance, architectural implementations and programming models change with each new hardware generation, often leading to costly application re-engineering. Most tools for performance portability require manual and costly application porting to yet another programming model. We propose an alternative approach that automatically translates programs written in one programming model (CUDA), into another (CPU threads) based on Polygeist/MLIR. Our approach includes a representation of parallel constructs that allows conventional compiler transformations to apply transparently and without modification and enables parallelism-specific optimizations. We evaluate our framework by transpiling and optimizing the CUDA Rodinia benchmark suite for a multi-core CPU and achieve a 76% geomean speedup over handwritten OpenMP code. Further, we show how CUDA kernels from PyTorch can efficiently run and scale on the CPU-only Supercomputer Fugaku without user intervention. Our PyTorch compatibility layer making use of transpiled CUDA PyTorch kernels outperforms the PyTorch CPU native backend by 2.7$\times$.

Submitted to arXiv on 01 Jul. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.