Online Trajectory Prediction for Metropolitan Scale Mobility Digital Twin

Authors: Zipei Fan, Xiaojie Yang, Wei Yuan, Renhe Jiang, Quanjun Chen, Xuan Song, Ryosuke Shibasaki

Abstract: Knowing "what is happening" and "what will happen" of the mobility in a city is the building block of a data-driven smart city system. In recent years, mobility digital twin that makes a virtual replication of human mobility and predicting or simulating the fine-grained movements of the subjects in a virtual space at a metropolitan scale in near real-time has shown its great potential in modern urban intelligent systems. However, few studies have provided practical solutions. The main difficulties are four-folds. 1) The daily variation of human mobility is hard to model and predict; 2) the transportation network enforces a complex constraints on human mobility; 3) generating a rational fine-grained human trajectory is challenging for existing machine learning models; and 4) making a fine-grained prediction incurs high computational costs, which is challenging for an online system. Bearing these difficulties in mind, in this paper we propose a two-stage human mobility predictor that stratifies the coarse and fine-grained level predictions. In the first stage, to encode the daily variation of human mobility at a metropolitan level, we automatically extract citywide mobility trends as crowd contexts and predict long-term and long-distance movements at a coarse level. In the second stage, the coarse predictions are resolved to a fine-grained level via a probabilistic trajectory retrieval method, which offloads most of the heavy computations to the offline phase. We tested our method using a real-world mobile phone GPS dataset in the Kanto area in Japan, and achieved good prediction accuracy and a time efficiency of about 2 min in predicting future 1h movements of about 220K mobile phone users on a single machine to support more higher-level analysis of mobility prediction.

Submitted to arXiv on 21 Jun. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.