DDPG based on multi-scale strokes for financial time series trading strategy
Authors: Jun-Cheng Chen, Cong-Xiao Chen, Li-Juan Duan, Zhi Cai
Abstract: With the development of artificial intelligence,more and more financial practitioners apply deep reinforcement learning to financial trading strategies.However,It is difficult to extract accurate features due to the characteristics of considerable noise,highly non-stationary,and non-linearity of single-scale time series,which makes it hard to obtain high returns.In this paper,we extract a multi-scale feature matrix on multiple time scales of financial time series,according to the classic financial theory-Chan Theory,and put forward to an approach of multi-scale stroke deep deterministic policy gradient reinforcement learning model(MSSDDPG)to search for the optimal trading strategy.We carried out experiments on the datasets of the Dow Jones,S&P 500 of U.S. stocks, and China's CSI 300,SSE Composite,evaluate the performance of our approach compared with turtle trading strategy, Deep Q-learning(DQN)reinforcement learning strategy,and deep deterministic policy gradient (DDPG) reinforcement learning strategy.The result shows that our approach gets the best performance in China CSI 300,SSE Composite,and get an outstanding result in Dow Jones,S&P 500 of U.S.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.