Anticoncentration in Ramsey graphs and a proof of the Erdős-McKay conjecture
Authors: Matthew Kwan, Ashwin Sah, Lisa Sauermann, Mehtaab Sawhney
Abstract: An $n$-vertex graph is called $C$-Ramsey if it has no clique or independent set of size $C\log_2 n$ (i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge-statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of a $C$-Ramsey graph. This brings together two ongoing lines of research: the study of "random-like" properties of Ramsey graphs and the study of small-ball probabilities for low-degree polynomials of independent random variables. The proof proceeds via an "additive structure" dichotomy on the degree sequence, and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics, and low-rank approximation. One of the consequences of our result is the resolution of an old conjecture of Erd\H{o}s and McKay, for which Erd\H{o}s offered one of his notorious monetary prizes.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.