Hyperbolic Molecular Representation Learning for Drug Repositioning

Authors: Ke Yu, Shyam Visweswaran, Kayhan Batmanghelich

arXiv: 2208.06361v1 - DOI (q-bio.BM)
Accepted by NeurIPS workshop 2020. arXiv admin note: substantial text overlap with arXiv:2006.00986
License: CC BY 4.0

Abstract: Learning accurate drug representations is essential for task such as computational drug repositioning. A drug hierarchy is a valuable source that encodes knowledge of relations among drugs in a tree-like structure where drugs that act on the same organs, treat the same disease, or bind to the same biological target are grouped together. However, its utility in learning drug representations has not yet been explored, and currently described drug representations cannot place novel molecules in a drug hierarchy. Here, we develop a semi-supervised drug embedding that incorporates two sources of information: (1) underlying chemical grammar that is inferred from chemical structures of drugs and drug-like molecules (unsupervised), and (2) hierarchical relations that are encoded in an expert-crafted hierarchy of approved drugs (supervised). We use the Variational Auto-Encoder (VAE) framework to encode the chemical structures of molecules and use the drug-drug similarity information obtained from the hierarchy to induce the clustering of drugs in hyperbolic space. The hyperbolic space is amenable for encoding hierarchical relations. Our qualitative results support that the learned drug embedding can induce the hierarchical relations among drugs. We demonstrate that the learned drug embedding can be used for drug repositioning.

Submitted to arXiv on 06 Jul. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.