DRL-based Distributed Resource Allocation for Edge Computing in Cell-Free Massive MIMO Network
Authors: Fitsum Debebe Tilahun, Ameha Tsegaye Abebe, Chung G. Kang
Abstract: In this paper, with the aim of addressing the stringent computing and quality-of-service (QoS) requirements of recently introduced advanced multimedia services, we consider a cell-free massive MIMO-enabled mobile edge network. In particular, benefited from the reliable cell-free links to offload intensive computation to the edge server, resource-constrained end-users can augment on-board (local) processing with edge computing. To this end, we formulate a joint communication and computing resource allocation (JCCRA) problem to minimize the total energy consumption of the users, while meeting the respective user-specific deadlines. To tackle the problem, we propose a fully distributed solution approach based on cooperative multi-agent reinforcement learning framework, wherein each user is implemented as a learning agent to make joint resource allocation relying on local information only. The simulation results demonstrate that the performance of the proposed distributed approach outperforms the heuristic baselines, converging to a centralized target benchmark, without resorting to large overhead. Moreover, we showed that the proposed algorithm has performed significantly better in cell-free system as compared with the cellular MEC systems, e.g., a small cell-based MEC system.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.