Deep Hypergraph Structure Learning

Authors: Zizhao Zhang, Yifan Feng, Shihui Ying, Yue Gao

Abstract: Learning on high-order correlation has shown superiority in data representation learning, where hypergraph has been widely used in recent decades. The performance of hypergraph-based representation learning methods, such as hypergraph neural networks, highly depends on the quality of the hypergraph structure. How to generate the hypergraph structure among data is still a challenging task. Missing and noisy data may lead to "bad connections" in the hypergraph structure and destroy the hypergraph-based representation learning process. Therefore, revealing the high-order structure, i.e., the hypergraph behind the observed data, becomes an urgent but important task. To address this issue, we design a general paradigm of deep hypergraph structure learning, namely DeepHGSL, to optimize the hypergraph structure for hypergraph-based representation learning. Concretely, inspired by the information bottleneck principle for the robustness issue, we first extend it to the hypergraph case, named by the hypergraph information bottleneck (HIB) principle. Then, we apply this principle to guide the hypergraph structure learning, where the HIB is introduced to construct the loss function to minimize the noisy information in the hypergraph structure. The hypergraph structure can be optimized and this process can be regarded as enhancing the correct connections and weakening the wrong connections in the training phase. Therefore, the proposed method benefits to extract more robust representations even on a heavily noisy structure. Finally, we evaluate the model on four benchmark datasets for representation learning. The experimental results on both graph- and hypergraph-structured data demonstrate the effectiveness and robustness of our method compared with other state-of-the-art methods.

Submitted to arXiv on 26 Aug. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.