Automatic Code Documentation Generation Using GPT-3

Authors: Junaed Younus Khan, Gias Uddin

Accepted in IEEE/ACM International Conference on Automated Software Engineering (ASE 2022) - NIER
License: CC BY 4.0

Abstract: Source code documentation is an important artifact for efficient software development. Code documentation could greatly benefit from automation since manual documentation is often labouring, resource and time-intensive. In this paper, we employed Codex for automatic code documentation creation. Codex is a GPT-3 based model pre-trained on both natural and programming languages. We find that Codex outperforms existing techniques even with basic settings like one-shot learning (i.e., providing only one example for training). Codex achieves an overall BLEU score of 20.6 for six different programming languages (11.2% improvement over earlier state-of-the-art techniques). Thus, Codex shows promise and warrants in-depth future studies for automatic code documentation generation to support diverse development tasks.

Submitted to arXiv on 06 Sep. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.