The Impending Opacity Challenge in Exoplanet Atmospheric Characterization

Authors: Prajwal Niraula, Julien de Wit, Iouli E. Gordon, Robert J. Hargreaves, Clara Sousa-Silva, Roman V. Kochanov

Nature Astronomy, Sept 15, 2022
arXiv: 2209.07464v1 - DOI (astro-ph.EP)
16 Pages, 12 Figures
License: CC BY 4.0

Abstract: With a new generation of observatories coming online this decade, the process of characterizing exoplanet atmospheres will need to be reinvented. Currently mostly on the instrumental side, characterization bottlenecks will soon stand by the models used to translate spectra into atmospheric properties. Limitations stemming from our stellar and atmospheric models have already been highlighted. Here, we show that the current limitations of the opacity models used to decode exoplanet spectra propagate into an accuracy wall at ~0.5-1.0 dex (i.e., 3 to 10x) on the atmospheric properties, which is an order of magnitude above the precision targeted by JWST Cycle 1 programs and needed for, e.g., meaningful C/O-ratio constraints and biosignatures identification. We perform a sensitivity analysis using nine different opacity models and find that most of the retrievals produce harmonious fits owing to compensations in the form of >5$\sigma$ biases on the derived atmospheric parameters translating in the aforementioned accuracy wall. We suggest a two-tier approach to alleviate this problem involving a new retrieval procedure and guided improvements in opacity data, their standardization and optimal dissemination.

Submitted to arXiv on 15 Sep. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.