MetaPrompting: Learning to Learn Better Prompts
Authors: Yutai Hou, Hongyuan Dong, Xinghao Wang, Bohan Li, Wanxiang Che
Abstract: Prompting method is regarded as one of the crucial progress for few-shot nature language processing. Recent research on prompting moves from discrete tokens based ``hard prompts'' to continuous ``soft prompts'', which employ learnable vectors as pseudo prompt tokens and achieve better performance. Though showing promising prospects, these soft-prompting methods are observed to rely heavily on good initialization to take effect. Unfortunately, obtaining a perfect initialization for soft prompts requires understanding of inner language models working and elaborate design, which is no easy task and has to restart from scratch for each new task. To remedy this, we propose a generalized soft prompting method called MetaPrompting, which adopts the well-recognized model-agnostic meta-learning algorithm to automatically find better prompt initialization that facilitates fast adaptation to new prompting tasks.Extensive experiments show MetaPrompting tackles soft prompt initialization problem and brings significant improvement on four different datasets (over 6 points improvement in accuracy for 1-shot setting), achieving new state-of-the-art performance.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.