D$^{\bf{3}}$: Duplicate Detection Decontaminator for Multi-Athlete Tracking in Sports Videos

Authors: Rui He, Zehua Fu, Qingjie Liu, Yunhong Wang, Xunxun Chen

Abstract: Tracking multiple athletes in sports videos is a very challenging Multi-Object Tracking (MOT) task, since athletes often have the same appearance and are intimately covered with each other, making a common occlusion problem becomes an abhorrent duplicate detection. In this paper, the duplicate detection is newly and precisely defined as occlusion misreporting on the same athlete by multiple detection boxes in one frame. To address this problem, we meticulously design a novel transformer-based Duplicate Detection Decontaminator (D$^3$) for training, and a specific algorithm Rally-Hungarian (RH) for matching. Once duplicate detection occurs, D$^3$ immediately modifies the procedure by generating enhanced boxes losses. RH, triggered by the team sports substitution rules, is exceedingly suitable for sports videos. Moreover, to complement the tracking dataset that without shot changes, we release a new dataset based on sports video named RallyTrack. Extensive experiments on RallyTrack show that combining D$^3$ and RH can dramatically improve the tracking performance with 9.2 in MOTA and 4.5 in HOTA. Meanwhile, experiments on MOT-series and DanceTrack discover that D$^3$ can accelerate convergence during training, especially save up to 80 percent of the original training time on MOT17. Finally, our model, which is trained only with volleyball videos, can be applied directly to basketball and soccer videos for MAT, which shows priority of our method. Our dataset is available at https://github.com/heruihr/rallytrack.

Submitted to arXiv on 25 Sep. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.