Deep learning and machine learning for Malaria detection: overview, challenges and future directions

Authors: Imen Jdey, Ghazala Hcini, Hela Ltifi

Abstract: To have the greatest impact, public health initiatives must be made using evidence-based decision-making. Machine learning Algorithms are created to gather, store, process, and analyse data to provide knowledge and guide decisions. A crucial part of any surveillance system is image analysis. The communities of computer vision and machine learning has ended up curious about it as of late. This study uses a variety of machine learning and image processing approaches to detect and forecast the malarial illness. In our research, we discovered the potential of deep learning techniques as smart tools with broader applicability for malaria detection, which benefits physicians by assisting in the diagnosis of the condition. We examine the common confinements of deep learning for computer frameworks and organising, counting need of preparing data, preparing overhead, realtime execution, and explain ability, and uncover future inquire about bearings focusing on these restrictions.

Submitted to arXiv on 27 Sep. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.