Device-independent uncloneable encryption

Authors: Srijita Kundu, Ernest Y. -Z. Tan

arXiv: 2210.01058v1 - DOI (quant-ph)
License: CC BY 4.0

Abstract: Uncloneable encryption, first introduced by Broadbent and Lord (TQC 2020), is a form of encryption producing a quantum ciphertext with the property that if the ciphertext is distributed between two non-communicating parties, they cannot both learn the underlying plaintext even after receiving the decryption key. In this work, we introduce a variant of uncloneable encryption in which several possible decryption keys can decrypt a particular encryption, and the security requirement is that two parties who receive independently generated decryption keys cannot both learn the underlying ciphertext. We show that this variant of uncloneable encryption can be achieved device-independently, i.e., without trusting the quantum states and measurements used in the scheme. Moreover, we show that this variant of uncloneable encryption works just as well as the original definition in constructing private-key quantum money, and that uncloneable bits can be achieved in this variant without using the quantum random oracle model.

Submitted to arXiv on 03 Oct. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.