GoalsEye: Learning High Speed Precision Table Tennis on a Physical Robot
Authors: Tianli Ding, Laura Graesser, Saminda Abeyruwan, David B. D'Ambrosio, Anish Shankar, Pierre Sermanet, Pannag R. Sanketi, Corey Lynch
Abstract: Learning goal conditioned control in the real world is a challenging open problem in robotics. Reinforcement learning systems have the potential to learn autonomously via trial-and-error, but in practice the costs of manual reward design, ensuring safe exploration, and hyperparameter tuning are often enough to preclude real world deployment. Imitation learning approaches, on the other hand, offer a simple way to learn control in the real world, but typically require costly curated demonstration data and lack a mechanism for continuous improvement. Recently, iterative imitation techniques have been shown to learn goal directed control from undirected demonstration data, and improve continuously via self-supervised goal reaching, but results thus far have been limited to simulated environments. In this work, we present evidence that iterative imitation learning can scale to goal-directed behavior on a real robot in a dynamic setting: high speed, precision table tennis (e.g. "land the ball on this particular target"). We find that this approach offers a straightforward way to do continuous on-robot learning, without complexities such as reward design or sim-to-real transfer. It is also scalable -- sample efficient enough to train on a physical robot in just a few hours. In real world evaluations, we find that the resulting policy can perform on par or better than amateur humans (with players sampled randomly from a robotics lab) at the task of returning the ball to specific targets on the table. Finally, we analyze the effect of an initial undirected bootstrap dataset size on performance, finding that a modest amount of unstructured demonstration data provided up-front drastically speeds up the convergence of a general purpose goal-reaching policy. See https://sites.google.com/view/goals-eye for videos.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.